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DIGITAL FILTERING TECHNIQUES FOR BROADBAND BEAMFORMING

by

Aristides A.G, Requicha

L
ABSTRACT

Digital steering of broadband hydrophone arrays is studied from

the viewpoint of digital filtering theory. Emphasis is placed

on applications wherein the sampling frequency must be kept as

low as possible, implying that accurate beamforming involves

interpolating the signals? samples. Finite-impulse-response

filters are shown to provide convenient means for digital

interpolation. Standard techniques for implementing such filters

are reviewed and, applied to the design of beamforming algorithms.

Estimates are derived for the computing time and for the amount

of core memory required by digital computer realizations of

time-domain and frequency-domain beamforming processors, It is

shown that frequency-domain processing may yield large savings in

computing time when the sensors ' outputs have to be filtered
prior to steering; it can be competitive even for beamforming

alone. This situation arises e.g. in "optimal" array processing:

or in wideband arrays used in conjunction with explosive sound

sources: It is pointed out that the digital filtering approach

clarifies the approximations and possible pitfalls involved in

the design and implementation of digital beamsteering processors,



INTRODUCTION

Electronically steered hydrophone arrays are used in underwater

acoustics, especially when the transducer size or the scanning

speed make mechanical steering unpractical. Because of the growing

number of computers and of other digital equipment being used in

the acquisition and processing of underwater acoustics data it is

of interest to study digital techniques of array steering.

The work reported in this memorandum was a preliminary investigation

on digital beamsteering techniques to be used in the design of

beamformers for broadband arrays presently being built at SACLANTCEN.

The discussion is geared towards applications where the sampling

frequency must be kept close to its minimum theoretical value for

the data acquisition rate not to become unduly high. This situation

is often encountered in experimental work involving hydrophone

arrays and explosive sound sources. In these applications data

acquisition rates are usually quite high and can only be increased

at the cost of considerable equipment complexity.*

The digital filtering techniques described are equally applicable

to hardware or software processor, implementations. The discussion

of computational details, however, is mostly pertinent to implemen-

tations in general purpose digital computers. The possibility of

using a small shipborne computer to implement an array processor is

very attractive, since the computer can be time-shared with other

activities and effectively perform various data acquisition and

analysis tasks at sea. Furthernb re, software processors afford

*The maximum data acquisition rate of a system currently used at SACLANTCEN

[Ref. 1] is 240 kHz, corresponding to a maximum number of 20 hydrophones at
12 kHz sampling frequency (or 10 at 24 kHz, etc.).



-great flexibility- and4can ,be modified, with relative ease. These

consdertion jutif the emphasis-ý!ot comnputer implementatios

It should- -be n1oted, howev~er, that hiardware' proces*sors- designed

for a specific t-ask- can usually be made more- efficient than a

genralpurpose machine. An interesting compromise 'between

flexibil~ity and -efficieh-cy can Le- attained- -by exctending, th

-capabilities ;of a centr'al processor -with wired- microprogrammed

'unitA,, §uch- as A f~ist FPourie~r, transformj Of-) pocessor~a

Beamforminfg consistsj eýsehitiArly in, delaying, -the 'hydrophonie
oqutputs -by suitable amounts., folioye -by adding all the delayed

signals. The ',beafn' is stoe~d, in al cer~itain -direction by introducing

delays to compensate f~or the, travel1 time cji~ffcrnces between

,arfivals, -at the, -different ydooxe.For narrowband signals

timb-d~elaying ban ýbe impý,emnnted ,by ni~eans oýbf p~hase-shifters., the
Usual 96lutiod in4-1 rada&r, phase6d` afrdys, 'However,, when the signals

,are ýWideband asote6n-happenis in-under~water -acoustics., frequency-
independent timei delays. ,(linear pha~se-shif, ts) must. 'b6 introduced.
-this can -be done Us~ing., an4alo ýproqess§ihg techniques by means of
-delay lines3 tDigitai mlerih~ntation is-strýaig~htforward provided

that the requiired' delays are integral numbers -of sAniples., and
enough'memory, is avai*lable,, Inidee6d), it sudffices to store a matrix
With a numbe~r of. roýwsý e-qLual to the -numbei? o6f sensors, say., and a
number of dolujmns-e equai to, the m&.kimumn. delay needed, measured in

iiifpleg. At ýeach sýQamplifig ins§tant. aýndi 'for each ,beam., one heed

only "1cihoose"l firomi the- mhatrix. the eliements with, the -correct delay
and ad', themet, Then, shift- the d-at-a-onib coluMn to-the right., read
in one neýw sa;mple, kor e~dh-; sphsor, :aind .o Tfoth0 . Note, that t ,he

ýbeam cdani be stebeted! iný ahy dirP-ction. by thii-s ýtechnique within- any
ýprescribed.At~curAcY. merel"Y :by utsi~ng a sampini~,ig fre6quency higth

enouh ~r de dlay qUAntizAti~on to -have negligible efcs

Whcný the samplinig frequency i~i _choýýeiv fai-rly 61aiie- to its

,thcoretlicaI Jr~inimirni- Value,- deiays of frabtlions, o~f a sample interval

are usually- needed,, Coiisi4er, for exaiiiple, A linear array with
-element,§ equa fly sPa ced&halk-d-w~velht Apart ýAt afrequency f.
It is curient prac-tice 'at- -SACANTCENK bo -sakiple at a _Creqii~ncy F

s
-eqiual -to 'threý,e timi-s the niaxixnur froequcucy of- interest0 . A delay



of one sample (At) is equivalent to a phase shift of 2nf~t, i.e.,

1200 for f=Ps/3. In the example being discussed phase shifts of
900 between successive sensors are needed to steer the array at

300 from broadside (45' for 150 steering angle). Thus, time-

delaying by integral number of samples is seen to lead to gross

errors.

Digital beamforming techniques in the frequency domain, which

allow the use of non-integral delays, have been described in

recent letters to the J.A.SoAo [Refs. 2 and 3], In the present

paper digital beamforming is studied from the viewpoint of digital

filtering theory. The full force of digital filtering techniques,

developed over the past few years. can be called upon to design

interpolating filters capable o. approximating fractional delays

to any prescribed accuracy, In this cwntext2 the FFT technique

of Refs. 2 and 3 is recognized as a particular implementation by

means of finite-impulse-response (FIR)* digital filters, and it

becomes clear how to avoid the "wrap-around" errors mentioned in

Ref. 3, which are due to the periodic nature of the discrete

Fourier transform (DFT)o

Digital filtering techniques for time-shifting a signal are

discussed in Chapter 1, Because the problem of designing time-

shifting (interpolating) filters is easier to solve for FIR

filters, beamforming is discussed in this context in Chapter 2.

Running time and memory requirements are estimated for time-domain

and frequency-domain implementations of FIR beamformers, The time

estimates given are rough and should be regarded as mere indicatiors

of the orders of magnitude involved. Digital beamforming in a

computer is particularly attractive for broadband arrays such as

those used in conjunction with explosive sound sources [Ref. 5].

For this type of applications the signals must be filtered prior

to beamforming, and the computational effoiot for filtering and

beamforming must be evaluated as a whole. This topic is included

in the computational considerations of Chapter 2,

* Sometimes called "nonrecursive", although this teriinology is somewhat

incorrect [ Ref, 4].



I. DIGITAL TIME-SHIFTING FILTERS

].1 Shifting by an integral number of samples

Cowsider a sequence 'x(n)j, obtained by sampling a continuous

si.gra], x(t) at; the time instants InWtI, where n is an integer.

Timc-.shift.ing this sequence by mAt, for integral m, is clearly

equiva lent to convolving the discrete signal with a Kronecker delta

pulse located at sample number m:

x(n-m) = x(n) 1

%%r.,'c I =I for n~m, and is zero otherwise. Direct implemen-

tation ii the time domain is trivial; however, it is useful to point

out Ohat the convolution in the equation above can also be implemelaiod

(although inefficiently) in the frequency domain by using fast

convolutiion techniques [Refs. 6 to 8]. Because of the cyclical.

nU.tLIVC of DFT-based convolution, care must be exercised in trying

to implement apoeriodic convolutions in the frequency domain,

Standatrd procedures exist to handle this problem; the signal slhoild

be sectioned into blocks the :Length of which depends on the duration

ot) the impulse response (IR) of the [:.Ltersý and then particular

techniques, such as "select-save" or "overlap-add". should be used.

(The reader is referred to the above cited literature for details;

aii exampLe using the "select-save" technique will be presented in

section 1.3 Lr'low,)

1.2 Shifting by a fractional number of samruipes

Time-shifting a signal by a fractional number of samples consists

essentially in interpolating the signal samples. It is most

CrVui.tCLu to design interpolating (time-shifting) filters starting

From frequency-domain specifications, since it is usually in terms

of freqtiency-domai.n tolerances that engineerrs "think". Furthermore,

the design or digital filters to achieve specifications in the



frequency domain has been extensively studied, and numerous

design techniques are available (see e.g. Refs. 4, 9, and 10).

The ideal frequency response of an interpolating digital filter is
shown in Fig. 1. The slope of the linear phase characteristic is
proportional to the time delay. (The periodic nature of the filter

characteristics evident in Fig. 1 is of no consequence in applicata.ons
since signals must be bandlimiter prior to being digitized.) For
delays of a fraction of a sample the phase is discontinuous at the

Nyquist frequency (defined as one-half the sampling frequency),

implying that the imaginary component is also discontinuous. For

this reason digital filter implementations will usually exhibit

large errors in the neighbourhood of the Nyquist frequency. Note
that no discontinuity exists for delays of an integral number of

samp].es, because the phase is defined modulo 2,T.

Designing a FIR digital filter to approximate characteri.stics of

the type depicted in Fig. 1 is considerably simpler than designing

an infinite-impulse-response (IIR) filter, and only FIR realizations

will be discussed in this paper 0 Although rather sophisticated

techniques exist for designing FIR filters [Ref. 4], a straight-

forward frequency-sampling procedure leads to accurate approximations

with short IRts (low order filters), as the following example

illustrates. Consider a half-a-sample delaying filter. Construct
its ideal frequency response and sample it at M equidistant points.

The IR of the filter is simply the inverse DFT (IDFT) of the
frequency samples0 M is the length of the IR measured in samples

(order of the filter). The frequency response of the filter can be

obtained from the frequency samples by trigonometric interpolation,

which can be performed with the FFT [Ref. 11.]0 Comparison with the
ideal characteristics yields the error in the approximation. The
design method consists simply in evaluating the errors for ',various

values of Ni and in choosing the smallest M compatible with the

tolerances. Magnitude and phase errors for the half-a-sample delay
are zshown in Fig. 2a for M=32, and it, Fig. 2b for M=8. It is clear

from the Figures that high jcceuracy is obtained throi,,hout most of

the band with low values of •.
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The most effective implementation of FIR shifting filte-s depends

on the particular problem at hand. Nonrecursive realizations of

FIR filters are usually more efficient than recursive realizations

[Ref. 4]. There are two main choices of nonrecursive implemen-

tations: 1) direct convolutioný which is generally to be preferred

if the order of the filter is low and/or all the processing is done

in the time domain, and 2) fast convolution using the FFT, advan-

tageous if the IR is long and/or some other frequency-domain

processing i• needed.

1.3 An._example of FFT-based implementation

To illustrate a procedure for' implementing time-shifting filters

using the FFT, a concrete example will be discussed in detail in

this section.

Consider a delay of 1.5 samples. Note that it suffices to design

a filter for ½ sample delay and then to shift its IR by one sample

to obtain a 1.5 samples delay. In the frequency domain this is

equivalent to multiplying the DFT of the - sample filter by

lexp(-j27rmn/N) , where m=l, and N is the block size. Suppose

that a 16th. order - sample delaying filter designed by frequency

sampling yields errors within the required tolerances. For an IR

of length 16, the block length that leads to minimum computing time

is 64 [Ref. 8]. The IR of a 1.5 sample delaying filter, shown in

Fig. 3*., was obtained by first computing. the DFT of the I sample

delay for a block size N=64, multiplying by fexp(-jrn/8)l, and

inverting.

For ilanticipatory"** filters whose IR is zero for n=L, L+1,

N-R, the "select-save" technique described in Refs. 6 to 8 must be

'tThe solid lines connecting the samples are due to the linear interpolation
used in the plotting routine.

Strictly speaking the filter is not anticipatory, because FFT-processing
automatically introduces a delay of one block size.
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modified as indicated below. L and R are the effective lengths in

samples of the "left" and "right" parts of the IR. For the example

discussed here, L can be chosen equal to 10, and R to 6 (Fig. 3).

Note, however, that L and R could be chosen as larger numbers and

the procedure below would still be valid, although some efficiency

would have been lost. Define the parameter M as the sum L+R.

For the purposes of choosing the block size, it is this value of M

that should be considered as the total length of the IR. The fast

convolution can be implemented as follows:

1) Insert at least M-1 zeros before the first signal

samples. (This is necessary to obtain the first M-1 samples of

the result.) Construct with these zeros and the signal samples a

first block of length N=64.

2) FFT the block.

3) Multiply by the DFT of the delaying filter.

4) IDFT and discard the first L-1 and *he last R samples.

The remaining N-M+l samples are valid data.

5) Construct a new block of N points such that its first
M-1 samples are the last M-1 samples of the previous

block.

6) FFT, multiply, invert, discard, and continue the

procedure until the signal samples are exhausted.

Fig. 4 illustrates the use of the above procedure for a trapezoidal

pulse signal with a length of 70 samples.

1.4 Remarks

1.4.1 Advancing filters in the frequency domain

Neglecting the delay of one block inherent in FFT processing, both

advancing and delaying filters can be implemented in the frequency
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domain. Due to the cyclical (nature of the DFT, advancing a signal

by mn samples is equivalent to\k delaying it by N-m samples, where N

is the block size. Figure 5a shows the IR of a 10½ smaples delaying

filter of order 16 for a block size N=64. The IR of a 101 samples

advancing filter is shown in Fig. 5b. To implement these filters

by the technique described in section 1.3 one should take

L>I0, RP!O for the delaying filter, and L:O, Rz18 for the

advancing filter.

1.4.2 Trigonometric polynomial approximations

When signals are short enough to fit in the memory as a single

block, and maximum speed is not required*, one can delay the signal

by a samples (a may be non-integral) as follows:

1) DFT the signal.

2) Multiply by {exp(-j2Tr~an/N) .

3) IDFT°

This is the method discussed in Refs. 2 and 3. It is easy to see

that this is equivalent to interpolating the signal samples with

a trigonometrdc polynomial [Ref. 11], and then delaying this

polynomial. The procedure can also be viewed as an implementation

of rast convolution with a filter IR of length equal to the block

size N. It. follows from this fact that only part of the output

data is to be regarded as valid (see section 1.3), unless the signal

1is padded with an appropriate number of zeros [Ref. 7]°

1.4.3 FFT-based interpolation

Digital time-shifting is useful mainly in multichannel, processing

for beam steering purposes, However, it may sometimes be an

For a given IR length there is a block size for which the computing time is
minimum [ Ref. 8].

Note that the IOFT of lexp(-j2,7n/N)l decays with sin x/ x for non-integer a.
.ed therefore the order of the filter is less than N for practical purposes.



attractive technique for interpolating a single bandlimited signal.

Suppose that a bandlimited signal was sampled at the time instants

nAt., where At is small enough to satisfy Nyquistfs condition,

and that one wishes to increase the sampling rate and find the

samples at nAt/K. This problem is normally solved in practice by

DFTting the N given signal samples, adding zeros to the DFT to

obtain a block size KN, and inverting [Refs. 11 and 15]. The

"expansion factor" K is chosen as a power of two for convenience

in using the most common FFT programs. This procedure is equivalent

to passing a trigonometric polynomial through the samples. The

same result can be obtained by a slightly different computational

technique. For concreteness take K=4. Interpolating is

equivalent to delaying the signal by 1/4 of a sample, 1/2 sample,

and 3/4 of a sample, and then combining the partial results

(see Fig. 6). This can be done by DFTfing the signal, multiplying

by jexp(-j2nn/KN) ., inverting, etc. It is shown in the Appendix

that this procedure is easy to program using only 3N words of

core memory, while straightforward implementation of the conven-
tional technique requires KN words. The running time is about the

same in the two cases.

A final important remark is that the time-delaying filter need not

have a DFT lexp(-j2rn/KN)I. Indeed, for specified frequency-

domain tolerances, a filter with shorter IR will often be acceptable,

and proceeding as indicated e.g. in section 1.3 will lead to faster

processing and lower memory requirements.

I. • .• m • .• • • • • • " • . ... .. .. .. ,m m, ln i , ,H H H
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2, DIGITAL BEAMFORMINGu -USING FIR FILTERS

2.1 -General

This, chapter discusses the design of digital processors for

steering broadband arrays, under the assumption that some of

the sensorsI outputs must be shifted by non-integral number of

samples. If only an integral number of samples time-shifts are

needed, a straightforward shift-register type of implementation

is usually to be preferred, unless complicated filtering operations

besides beamforming must also be performed by the array processor.

Examples of applications involving multichannel filtering include

constant-beamwidth arrays [Ref. 5] and "optimal" arrays [Ref. 12].

The discussion in this chapter is relevant to this type of

applications. even though no fractional delays may be needed.

Because of the large number of possible alternatives, some of

which may be advantageous in particular cases, no attempts at

being exhaustive will be made, and only two techniques will be

described. These suffice to illustrate the principles of time-

domain and frequency-domain beamforming.

An underlying assumption throughout this chapter is that the

sampling frequency is the same for all sensors. It should be

noted, however, that in systems with very large bandwidth such

as those described in Ref. 5, wherein some sensors are effectively

cut-off at high frequencies, it may be desirable to have different

sampling rates.

Consider an array of M sensors placed at arbitrary locations

Jzij on a line (Fig. 7)*, and suppose that B beams are to be

formed. It will be assumed, for simplicity, that the desired beam

distribution is symmetric with respect to the axis of the array

K

The techniques described in section 2.2 below can be applied also to planar
and volume arrays with only minor modifications required.
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(broadside). In a self-explanatory fashion the beams ,qill be

labeled by assigning them the numbers -(B-1)/2, ...* -1, O, 1, ... ,

(B-1)/2. (B is assumed to be odd.) To steer the array at an angle e
from broadside one must time-shift the output of sensor i by

z..sin /c., where c is the sound speed. It is convenient to

form the beams at equal increments of sin 0, because then it

suffices to design only one time-shifting filter per sensor. For

example, beam number 2 can be formed by passing the sensorst

outputs twice through the filters needed, for beam number 1.

The design of time-shifting filters has been treated in Chapter 1.

For broadband arrays, such as those used with explosive sound

sources, the linear phase characteristics must be approximated

over a large portion of the available bandwidth, from close to DC

to 3/4 of the Nyquist frequency, say.

The first step in the design of a beamiormer consists in choosing

the maximum errors admissible in the filterst amplitude and phase

characteristics (AA+A6. respectively). This choice depends on

the desired performance and will not be discussed in this paper.

The percentage P of sensors requiring delays of non-integral

number of samples for the first beam can then be determined. P

depends on the phase and amplitude tolerances, the sensor locations,

and the beam resolution. To simplify the discuzqion, it will be

assumed in the sequel that the same sensors need non-integer delays

for all beams. Filters can be designed by the techniques outlined

in Chapter 1 to introduce the time-sh:fts required by the PM

sensors to form beam number 1. Note that the tolerances for these

filters should be A0 and AA divided by (B-1)/2, if the different

beams are computed "recursively" as indicated above. It will be

further assumed that FIR filters are used, and that the order of

the filters, D., needed to achieve the spiocified tolerancesis the

same foi all filters.

Program organizations and estimates of run ing time and core

memory requirements are considered in th( following section. Two

cases of inuerest are discussed: 1) beamn'orming when no prior

filtering is necessry, and 2) beamforming preceded by digital

filtering.



It will become apparent that the most economic solution, in terms

of computing time, depends on the number of sensors, the number

of beams, the percentage of sensors that require fractional delays,

the tolerances (reflected on the order of the filters), and also

on whether prior filtering is necessary. An example will show that

frequency-domain processing is i.ndeed a competitive technique for

certain application.

2.2 Computational considerations

2.2.1 Time-domain processing with no prior filtering

A program organization, schematically indicated in Fig. 8, will

now be described. Let St be the total time-shift (in samples)

between the two outermost sensors for beam (B-1)/2, and denote

by S an integer greater or equal to S. For each sensor S+ D

samples are kept in core. If the sensor needs no fractional delay,

it suffices to scan the respective buffer, and to transfer the

appropriate samples to another buffer of length B. If a fractional

delay is required, for each beam D samples are takcn out of the

sensor buffer, convolved with an interpolating filter of length D,

and the result stored in a buffer of length B. Once this is done

for all sensors, one output sample per beam is obtained simply

by adding the contents of the M buffers of length B. The sensor

buffers are then shifted to the right by one sample, the rightmost

sample is discarded, a new signal sample is introduced at the

leftmost position, and the beamforming operation is again performed.

Let K be the real addition time, and km the real multiplicationaM
time for the machine being used. A rough estimate of the running

time can be obtained by neglecting the time needed for input/output,

addressing, and transfer of data. For each of the sensors that need

fractional delays, D real multiplications and additions are required
per beam and data point. Noting that forming beam zero does not
involve delaying, the total time for the above operations is,

r'
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approximately,

( km+ka )PMD(B-l)

per data point. Taking into consideration the time needed for the

addition of the M buffers of length B, one obtains finally the

total time per output sample

T1 = (km+ka )PMD(B-l) + kaBM

Assi.ming that an integer is represented by one computer word, the

total amount of core required is

M(S+D) + MB + PMBD

words.

It was implicitly assumed that the term PMBD above is small,

implying that it is easy to keep in core the various filter IR's.

of length D sampleF. each. Note that, in this assumption, each

filter can be designed for the tolerances A., AA.

2.2.2 Frequency-domain processing with no prior filtering

Taking the center of the array as the reference for measuring

phases, beamforming involves delaying or "advancing" the outputs

of the various sensors. The maximum time-shift needed is S/2

samples (S is assumed even, for simplicity). All the time-shifting

filters needed can be implemented by the "select-save" technique

taking L=R=(S+D)/2 (cf. section 1.3). Some of the filters could

be implemented with lower values of L and Ro However, the program

organization is facilitated if the same values are used for all

sensors,

The beaniforaier output is to be interpreted as a vector of B components, each
of which is a time-series corresponding to a bee n. Thus, TI is the time
necessary to generate B samples, one per beem.
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The procedure will now be described. The DFT of the time-shifting

filters needed for the first beam and each sensor are first

computed and stored (on disk, say). The time required for this

computation will not be taken into account, since it need only be
done once for each array. For sensor number 1, N signal samples

are read in, together with its filter DFT. The signal is DFTted

and then multiplied by the filter to yield the DFT of the sensorts

contribution to the first beam. This last operation takes a

complex multiplication, i.e., four real multiplications and two
real additions, per frequency point. Because there are only

N/2+1 distinct freqaency points, the time required for phase-

shifting beam number 1 is

(4k m+2k a)(N/2+l)

per sensor and per block of data. Beam number 2 can be obtained

by multiplying the DFT of beam 1 by the filter characteristics,

and so forth, Beams numbered -1, -2, etc., can be obtained by

successive multiplication of the signal DFT by the complex

conjugate of the delaying filter DFT. The total phase-shifting

effort is

(4km+ 2 ka )(N/2+1)(B-l)

per block and per sensor. Suppose that the B frequency-domain

blocks, which are the contribution of sensor 1 to the various

beams can be kept in core. One can then take a block of signal 2

and its filter, and proceed as indicated for signal 1. For each

beam the contribution of sensor 2 should be added to the contri-

bution of sensor 1, and the result accumulated in core. It is

easy to see that only B+ 3 blocks of core are used in this

By using an additional I/O operation (read a block from disk) per beam, the
interpolating filters can all be designed for the tolerances AA, t
(cf. end of section 2.2.1 for a similar discussion in time-domain processing).
This involves more initial design effort and more disk memory.



.implementation. The procedure is continued for all sensors.

"The total time required for phase-shifting and adding is

(4km+2ka )(N/2+I)(B-I)M+ 2ka(N/2+l)B(M-)

Each beam is subsequently inverse transformed, and S+D-l

samples discarded (see section 1.3). Thus, M signal DFTTs and

B beam IDFTts are needed per block. Denoting by kfft the

computation time for a FFT with block size N, the total

transforming and inverting effort per block is

k fft (M+B)

Because the signals are real, k fft is approximately [Ref. 81

1(2k +3k )Nlog 2 N

Recalling that only N-(S+D-l) points are regarded as valid

data., the total computing time per output sample is therefore

T =[ 1 (2k +3k )(NlogN)(M+B) + (41+2k )(N/2+l)(B-a)M
2 2 m a 92 M a

+ 2ka (N/2+l)B(M-l)]/[N-(S+D-l)]

The block length N should be chosen so as to minimize the

computing time T2 . As in the simpler case of single-channel

filtering [Ref. 8], as long as N is not too small. the running

ti,,e is not strongly dependent on the block length (see

section 2.2.5 below).

The time necessary to perform the I/0 of 2M+B blocks of N samples

was neglected in the above estimates.

The procedure described uses (B+3)N words of core for its data

manipulations (of course other arrangements are possible). If no

external storage device such as a disk is available, frequency-

domain processing takes a prohibitive amount of core and will

not be feasible unless a very large computer is used. Because

of the large number of variables involved, an attempt at



comparing time- and frequency-domain processing in general

terms will not be made. However, a discussion based on a

specific example will be given in section 2.2.5 below.

2.2.3 Time-domain processing with prior filtering

Suppose now that the signals must be filtered prior to

beamforming by means of FIR filters with IR's of length, Q

samples.

The time required to implement the filtering in the time domain

by direct convolution is

(km+k)Q

per sensor and data point. Using the results and assumptions of

section 2.2o., the total computing time for filtering and

beamforming is

T3=(ki+k )QM + (k +k ) PMD(B-1) + k BM
m a m aa

Since additional buffers are needed for the filtering. the

memory requirements are increased by 2MQ words.

2.2.4 Frequency-domain processing with prior filtering

The procedure is similar to that described in section 2.2.2,

except that one should take L=R=Q+S+D for the "select-save"

technique, and an additional complex block multiplication,

together with an I/O operation are needed per sensor. Thus,

each block r'equires an additional

(4kII+2ka ) (N/2+I)M

The total time per output sample is now

r (z 2 Im '3k )( N log2N) (M+B) + (4kin+2ka) (N/ 2+1)"B +

2ka (N/2+I)B(M-l)]/[N-(Q+S+D-I)]



N should be chosen by minimizing the above expression. Note

that the optimal value of N is now also dependent on the order

of the filters Q.

The core memory requirements remain the same as in section 2.2.2.

It is apparent that the running time is only slightly increased

by the filtering operation when the processing is done in the

frequency domain. In time-domain processing, however, the

increase may be substantial.

2.2.5 Example

The computational considerations of the preceding sections will

now be applied to a specific array, which is presently being

studied at SACLANTCEN [Ref. 5].

The array has 20 unequally spaced hydrophones, the beam-i,idth is

approximately constant at about 15 0 over the 3½ octave band of

operation, and it is desired to form 5 beams at -300, -150: 0',

150', and 300.

For a sampling frequency F and array length d, thes

quantity S' defined in section 2.2 is given by

S'=sin 0MO Fsed/c

where c is the sound speed, and Op is t! e largest steering

angle desired. For the exampie under consideration St _84. To

achieve constant beamwidth [Ref. 5] it is necessary to filter the

sensor outputs by means of FIR filters of order, Q=256. The

outerL hydrophones in the artray are effectively cut-off at high

fr-equency and do not need fractional delays. However, th?

8 cent ral hydrophones require non-antegral time-shifts, whence

P-8/20. The interpolating filters fot, the central sensors are

of order D=:L6. The relevant parameters for the array are



therefore:

M =20

B=5

P = 8/20

D= 16

S= 84

Q= 256

The processor is implemented in a Hewlett-Packard 2116B mini-

computer with disk storage and extended arithmetic unit, whose

multiply and add times a7,e , in microseconds,

k = 25.6

ka =9.6

The running time for time-domain processing, found by direct

substitution in the expressions of section 2.2.3, is

T3 -- 180 + 18 + 1 = 200 msec/sample.

The largest contribution to T3 comes from the filtering

operation.

For Crequency-domain processing N must be chosen so as to make

T4 small (see section 2.2.4). Substitution into the expression

"found in section 2.2.4 yields (in microseconds)

T4 c! (1000 log2 N +-6080+ 810).N/(N-355).

T4 varies slowly with N, when N is above a "threshold", and

These figures include fetching a word, fixed-point multiplying or adding,
and storing the result, and are therefore somewhat pessimistic. On the
other hand, the computing effort involved in checking and correcting for
overflows is not taken into consideration in the estimates.



therefore the choice of block size is not critical. (A similar

result obtains for single-channel filtering [Ref. 8].) Table I

shows values of T4 corresponding to various block sizes (powers

of two).

TABLE I

N T4 (msec/sample)

512 49

1024 26

2048 22

4096 21

IV, is apparent that; the running time is about the same as long

as the block size is larger than 512. Thus, 1024 is a good

choice Cor N, since the amount of core memory needed is smaller.

Still, about 8k words of core memory are used in this implemen-

tat~ion, while time-domain processing only requires in the order

of' 3k, Frequency-domain processing is about 8 t:imes faster than

Ctime-domain processing for this particular example. This is

not so sutpri.sing, since a .large effort. must be put into the

filtlering operation. If tile order of the filters were lower

dnd tihe number' of beams to be form(e(d higher the economics of

the process might change.

Consider- now the same example, but assume that no prior filtering

is trequired. The computing time for time-domain processing is now

T1 ý 19 msuec/sample,

and the memory needed unclder 1k. Fo1t1 frequency-domain processing

the choice of: blocek length must be reconsidered. The computing

ttime now becomes

T 2  (:1000 1og 2 N+4860+8810).N/(N-100).

A lmm



T2 is given in Table II for various block sizes.

TABLE II

N T 2 (msec/sample)

256 22

512 18

1024 17.5

2048 17.5

Somewhat unexpectedly, the computing time for FFT process4Ing is

less than for time-domain processing in this example, even if

no filtering is needed. This fact should not be taken as a general

result, but rather as evidence that FFT processing can indeed be

a competitive technique for bcamsteering.

A final comment is warranted. For a sampling frequency F= 24 kHz

the array described above will take in the order of 6 minutes to

process a signal of length 1 second. Since the operation can be

accelerated by using a faster computer, a hardware FFT transformer

and careful programming, the use of broadband arrays for explosive

echo-ranging seems possible with state-of-the-art techniques. It

should be noted that the computing time estimates given throughout

this chapter are very rough and should be considered as order-of-

magnitude values. The ratio between running time for frequency

domain and time-domain processing is likely to be more accurate

than each of the separate estimates. Measured values for the

running time of the overall processors are not yet available.

However the time for computing a :1024 point FFT using routines

supplied by Hewlett-Packard has been found to be about three timesI longer than the values used in the estimates of this chapter. The
discrepancy is believed to be due to book-keeping and scaling

operations needed by the fixed-point routines. Errors of the same

order of magnitude may well be present in all the given estimates.



RECAPITULATION & CONCLUSIONS

Digital filtering theory provides convenient and powerful means

of treating broadband digital beamforming, especially when

time-shifts of non-integral numbers of samples are needed. This

problem arises when the sampling frequency is too low for accurate

beamsteering to be possible by using only time-shifts of an

integral number of samples. Keeping the sampling frequency as low

as possible is necessary when minimaldata acquisition rates are

desired A as often happens in experiments with hydrophone arrays and

explosive sound sources. The digital filtering approach is also

advantageous when the sensorst outputs must be filtered prior to

beamforming, especially if the filtering operation is fairly

complex, as e.g. in constant beamwidth arrays [Ref. 5], and

"optimal" arrays [Ref. 12].

Time-shifting (interpolating) filters form the essential part of

the steering processor. FIR filters are particularly attractive

as interpolators, because they are quite simple to design given

phase and amplitude tolerances in the frequency domain.

Implementation of these filters is also straightforward, and no

restriction on signal duration is necessary. It is shown in

Chapter 1 that high accuracy can be obtained with low order FIR
i.lOters without recourse to sophisticated design techniques.

Beamforming procedures based on lime-domain and frequency-domain

implementation of FIR, filters are discussed in Chapter 2 and rough

estimates of running time and core-memory requirements are given.

A trade-off exists between the complexity of the data acquisition

equipment to achieve a certain data rate and the complexity of the processing.
If the data acquisition system and the processor are being designed simulta-
neously, this trade-off should be taken into consideration in the choice of
the sampling frequency.1; How to specify these tolerances depends on the particular problem being
considered, and is not discussed in this paper.



The estimates depend on the number of sensors, the number of

beams, the percentage of sensors needing fractional delays, and

the prescribed accuracy. For each particular case these procedures

can be compared by simple substitution of the relevant parameters

in the formulae derived. Refinements of these techniques, as well

as "hybrid" processing (partly in the time domain and partly in

the frequency domain) are easy to evaluate along the same lines.

Sample calcd.lations performed for an array of interest in

SACLANTCENfs work involving explosive sound sources indicate that

frequency-domain processing can be competitive, in terms of computing

time, for beamforming alone and may give 1:10 savings when compli-

cated prior filtering is needed. Frequency-domain methods are

disadvantageous from the memory use viewpoint. The order of

magnitude of the running time for the example considered shows

thab directional arrays using in the order of 20 or 50 hydrophones

for broadband echo-ranging are within present dayts digital

processing technology.

The problem of estimating the power spectrum of a signal using an

array [Ref. 3] is not discussed in this paper. Suffice it to say,

however, that the array can be steered and the output obtained to

any prescribed frequency-domain accuracy by the techniques described.

From the array output the power spectrum can then be estimated by

standard techniques (sen e.g., Refs. 13 and 14).
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APPENDIX

INTERPOLATION USING THE FFT

Estimates for computing time and core use are derived in this

appendix for the two FFT interpolation techniques described in

section 1.4.3.

1. DFT-add zeros-IDFT

The computing (time is, using the same notation as in section 2.2,

T=--(2k +3ka).[N :log 2 N + KN log2 (KN)],

and KN words of core are needed for a straightforward implementation.

2. Successive delayin•

The procedure is as follows, First compute and store in core the

phase-shifting filter 1exp(-j2rnu/KN)j. Then, DFT the signal,

phase-shift, store, and invert. The IDFT can be written onto

disk, say, :if the amount of available core memory is small. A

second phase-shift and inversion can then be done, and so forth.

K-1 phase-shifts are necessary to obtain all the interpolated values.

llonce, the running time is

,:(2k +31 )KN. log2N + (4km+2ka) (K-1(N/2+l)

iC the time to compute the filter characteristics is neglected.

The amount of core memory needed. 3N words, is less than in the

previous metlhod. Of course some unscrambling must be done in this

proc(edure, to sort the samples in the correct order. The time

requiredi ror this operation is usually small and is not taken into

account in f-he assumate above.



Assuming that ka <<kC1 K<<N, and log 2 N>>2, it is easy to see

that T;T T . Therefore the two techniques lead to about the

same computing time. When the expansion factor K is large, a

recently proposed modiAj cation of the FFT algorithm (Ref. 17)

may lead to considerable time-savings and make the "DFT-add

zeros-IDFT" technique more attractive. Succesive delaying is

advantageous from a memory requirements point of view. It

should be noted, however, that it is possible to compute a FFT

of block size KN, without using KN words of core (Ref. 16).

The above discussion shows, incidentally. that a straight-
forward IDFT interpolation technique is inferior to "DFT-phase

shift-IDFT" for beamsteering purposes, both in running time and

core use. In fact., it would only be about as good if all the

KN samples generated were needed in the beamforming algorithm.
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